國內英語資訊:Chinese satellite detects mysterious signals in search for dark matter

雕龍文庫 分享 時間: 收藏本文

國內英語資訊:Chinese satellite detects mysterious signals in search for dark matter

BEIJING, Nov. 30 -- China's Dark Matter Particle Explorer (DAMPE) has detected unexpected and mysterious signals in its measurement of high-energy cosmic rays, which might bring scientists a step closer to shedding light on invisible dark matter.

The satellite, also called Wukong, or Monkey King, has measured more than 3.5 billion cosmic ray particles with the highest energy up to 100 tera-electron-volts (TeV for short, corresponding to 1 trillion times the energy of visible light), including 20 million electrons and positrons, with uNPRecedentedly high energy resolution.

"DAMPE has opened a new window for observing the high-energy universe, unveiling new physical phenomena beyond our current understanding," said Chang Jin, chief scientist of DAMPE and vice director of the Purple Mountain Observatory of the Chinese Academy of Sciences (CAS).

The initial detection results were published in the latest issue of the academic journal, Nature.

"This is the first time a space experiment has reported a detailed and precise electron and positron spectrum up to about 5 TeV. In this energy range, we found some unexpected and interesting features. We have detected a spectral break at 0.9 TeV and a possible spike at 1.4 TeV," said Chang.

Precise measurement of cosmic rays, especially at the very high energy range, is important for scientists to look for traces of dark matter annihilation or decay, as well as to understand the most energetic astrophysical phenomena in the universe, such as pulsars, active galaxy nuclei and supernova explosions. "Our data may inspire some new ideas in particle physics and astrophysics," said Chang.

Dark matter, which cannot be seen or touched, is one of the great mysteries of science. Scientists calculate that normal matter, such as galaxies, stars, trees, rocks and atoms, accounts for only about 5 percent of the universe. However, about 26.8 percent of the universe is dark matter and 68.3 percent dark energy.

China sent DAMPE into an orbit of about 500 kilometers above the earth on December 17, 2024, to look for evidence of the annihilation or decay of dark matter particles in space.

DAMPE has the widest energy range coverage and the highest energy resolution of all the dark matter probes currently in space. Based on the satellite's data, scientists drew the cosmic ray electron and positron spectrum.

To their surprise, scientists found a break at around 0.9 TeV and a strange spike at around 1.4 TeV on the spectrum. "We never expected such signals," Chang said.

"The spike might indicate that there exists a kind of unknown particle with a mass of about 1.4 TeV," said Chang.

"All the 61 elementary particles predicted by the standard model of particle physics have been found. Dark matter particles are beyond the list. So if we find a new elementary particle, it will be a breakthrough in physics," he added.

"The spike is very unusual," said Fan Yizhong, deputy chief designer of the scientific application system of DAMPE. "The signals might have originated from either dark matter or pulsars. Even if they were from pulsars, it would be quite a strange astrophysical phenomenon that nobody had known before."

"However, the data of the strange signal are still not enough. We need to collect more data to make sure it's real," Chang said.

More than 100 Chinese scientists and engineers, together with those from Switzerland and Italy, took part in the development of DAMPE and the analysis of its data.

Researchers have ruled out the possibility that the unusual signals are caused by a malfunction of the satellite's detectors. Independent analyses from five different teams all came to the same conclusion, said Chang.

DAMPE's design life is three years, but as it is performing so well, scientists expect it to work much longer. "DAMPE will continue to collect data to help us better understand the anomaly and might bring dark matter out of the shadows," said Chang.

Nobel Laureate Samuel Chao Chung Ting, leader of the Alpha Magnetic Spectrometer (AMS-02) experiment on the International Space Station, said of DAMPE, "It's a very good experiment."

Bi Xiaojun, a particle physicist at the Institute of High Energy Physics of the CAS, said DAMPE's observations are important to help scientists better understand the origin of cosmic rays.

"The satellite's data on the spike at 1.4 TeV are still not enough to declare a physical discovery. If the signal can be confirmed with the accumulation of data, it would be of great significance," Bi said.

"That could be explained by either dark matter or an astrophysical source. If we use dark matter to explain it, dark matter would be different from what we thought before. It conforms to the popular dark matter model of weakly interacting massive particles (WIMP), but has some special features," Bi said.

Chen Hesheng, a CAS academician, said that even if a candidate dark matter particle is found, it still needs other experiments such as underground detection or collider experiments to confirm it, which would be difficult.

BEIJING, Nov. 30 -- China's Dark Matter Particle Explorer (DAMPE) has detected unexpected and mysterious signals in its measurement of high-energy cosmic rays, which might bring scientists a step closer to shedding light on invisible dark matter.

The satellite, also called Wukong, or Monkey King, has measured more than 3.5 billion cosmic ray particles with the highest energy up to 100 tera-electron-volts (TeV for short, corresponding to 1 trillion times the energy of visible light), including 20 million electrons and positrons, with uNPRecedentedly high energy resolution.

"DAMPE has opened a new window for observing the high-energy universe, unveiling new physical phenomena beyond our current understanding," said Chang Jin, chief scientist of DAMPE and vice director of the Purple Mountain Observatory of the Chinese Academy of Sciences (CAS).

The initial detection results were published in the latest issue of the academic journal, Nature.

"This is the first time a space experiment has reported a detailed and precise electron and positron spectrum up to about 5 TeV. In this energy range, we found some unexpected and interesting features. We have detected a spectral break at 0.9 TeV and a possible spike at 1.4 TeV," said Chang.

Precise measurement of cosmic rays, especially at the very high energy range, is important for scientists to look for traces of dark matter annihilation or decay, as well as to understand the most energetic astrophysical phenomena in the universe, such as pulsars, active galaxy nuclei and supernova explosions. "Our data may inspire some new ideas in particle physics and astrophysics," said Chang.

Dark matter, which cannot be seen or touched, is one of the great mysteries of science. Scientists calculate that normal matter, such as galaxies, stars, trees, rocks and atoms, accounts for only about 5 percent of the universe. However, about 26.8 percent of the universe is dark matter and 68.3 percent dark energy.

China sent DAMPE into an orbit of about 500 kilometers above the earth on December 17, 2024, to look for evidence of the annihilation or decay of dark matter particles in space.

DAMPE has the widest energy range coverage and the highest energy resolution of all the dark matter probes currently in space. Based on the satellite's data, scientists drew the cosmic ray electron and positron spectrum.

To their surprise, scientists found a break at around 0.9 TeV and a strange spike at around 1.4 TeV on the spectrum. "We never expected such signals," Chang said.

"The spike might indicate that there exists a kind of unknown particle with a mass of about 1.4 TeV," said Chang.

"All the 61 elementary particles predicted by the standard model of particle physics have been found. Dark matter particles are beyond the list. So if we find a new elementary particle, it will be a breakthrough in physics," he added.

"The spike is very unusual," said Fan Yizhong, deputy chief designer of the scientific application system of DAMPE. "The signals might have originated from either dark matter or pulsars. Even if they were from pulsars, it would be quite a strange astrophysical phenomenon that nobody had known before."

"However, the data of the strange signal are still not enough. We need to collect more data to make sure it's real," Chang said.

More than 100 Chinese scientists and engineers, together with those from Switzerland and Italy, took part in the development of DAMPE and the analysis of its data.

Researchers have ruled out the possibility that the unusual signals are caused by a malfunction of the satellite's detectors. Independent analyses from five different teams all came to the same conclusion, said Chang.

DAMPE's design life is three years, but as it is performing so well, scientists expect it to work much longer. "DAMPE will continue to collect data to help us better understand the anomaly and might bring dark matter out of the shadows," said Chang.

Nobel Laureate Samuel Chao Chung Ting, leader of the Alpha Magnetic Spectrometer (AMS-02) experiment on the International Space Station, said of DAMPE, "It's a very good experiment."

Bi Xiaojun, a particle physicist at the Institute of High Energy Physics of the CAS, said DAMPE's observations are important to help scientists better understand the origin of cosmic rays.

"The satellite's data on the spike at 1.4 TeV are still not enough to declare a physical discovery. If the signal can be confirmed with the accumulation of data, it would be of great significance," Bi said.

"That could be explained by either dark matter or an astrophysical source. If we use dark matter to explain it, dark matter would be different from what we thought before. It conforms to the popular dark matter model of weakly interacting massive particles (WIMP), but has some special features," Bi said.

Chen Hesheng, a CAS academician, said that even if a candidate dark matter particle is found, it still needs other experiments such as underground detection or collider experiments to confirm it, which would be difficult.

信息流廣告 周易 易經 代理招生 二手車 網絡營銷 旅游攻略 非物質文化遺產 查字典 社區團購 精雕圖 戲曲下載 抖音代運營 易學網 互聯網資訊 成語 成語故事 詩詞 工商注冊 注冊公司 抖音帶貨 云南旅游網 網絡游戲 代理記賬 短視頻運營 在線題庫 國學網 知識產權 抖音運營 雕龍客 雕塑 奇石 散文 自學教程 常用文書 河北生活網 好書推薦 游戲攻略 心理測試 石家莊人才網 考研真題 漢語知識 心理咨詢 手游安卓版下載 興趣愛好 網絡知識 十大品牌排行榜 商標交易 單機游戲下載 短視頻代運營 寶寶起名 范文網 電商設計 免費發布信息 服裝服飾 律師咨詢 搜救犬 Chat GPT中文版 經典范文 優質范文 工作總結 二手車估價 實用范文 古詩詞 衡水人才網 石家莊點痣 養花 名酒回收 石家莊代理記賬 女士發型 搜搜作文 石家莊人才網 鋼琴入門指法教程 詞典 圍棋 chatGPT 讀后感 玄機派 企業服務 法律咨詢 chatGPT國內版 chatGPT官網 勵志名言 河北代理記賬公司 文玩 語料庫 游戲推薦 男士發型 高考作文 PS修圖 兒童文學 買車咨詢 工作計劃 禮品廠 舟舟培訓 IT教程 手機游戲推薦排行榜 暖通,電地暖, 女性健康 苗木供應 ps素材庫 短視頻培訓 優秀個人博客 包裝網 創業賺錢 養生 民間借貸律師 綠色軟件 安卓手機游戲 手機軟件下載 手機游戲下載 單機游戲大全 免費軟件下載 石家莊論壇 網賺 手游下載 游戲盒子 職業培訓 資格考試 成語大全 英語培訓 藝術培訓 少兒培訓 苗木網 雕塑網 好玩的手機游戲推薦 漢語詞典 中國機械網 美文欣賞 紅樓夢 道德經 標準件 電地暖 網站轉讓 鮮花 書包網 英語培訓機構 電商運營
主站蜘蛛池模板: 国产羞羞视频在线观看| 日本高清无卡码一区二区久久| 国产视频一区二区在线观看| 国产精品黄页网站在线播放免费| 人人狠狠综合久久亚洲| chinese帅哥18kt| 欧美综合人人做人人爱| 国产精品国色综合久久| 亚洲伦理中文字幕| 麻豆国产精品免费视频| 无码av专区丝袜专区| 午夜视频免费国产在线| heyzo亚洲精品日韩| 欧美精品亚洲精品日韩专区 | 日韩毛片无码永久免费看| 国产在线一区二区三区av| 久久久久国产精品免费网站| 精品无人区麻豆乱码1区2区| 女m室内被调教过程| 亚洲欧美日韩综合在线| 日本色图在线观看| 日本三区四区免费高清不卡| 凹凸国产熟女精品视频| 99久久综合久中文字幕| 樱花草视频www| 国产91精品系列在线观看| groupsex娇小紧的5一8| 欧美性大战久久久久xxx| 国产成人精品三级麻豆| 亚洲国产第一区| 免费观看无遮挡www的视频 | 一级片在线免费看| 波多野结衣办公室| 天天爱天天做色综合| 全部免费毛片在线| 97久久精品人妻人人搡人人玩| 樱桃视频影院在线观看| 国产v亚洲v欧美v专区| 99视频精品全部在线观看| 果冻传媒和91制片厂| 啊用力太猛了啊好深视频|